STP62NS04Z # N-channel clamped 12.5 mΩ, 62 A, TO-220 fully protected MESH OVERLAY™ Power MOSFET #### **Features** | Туре | V _{DSS} | R _{DS(on)}
max | I _D | |------------|------------------|----------------------------|----------------| | STP62NS04Z | Clamped | < 0.015 Ω | 62 A | - 100% avalanche tested - Low capacitance and gate charge - 175 °C maximum junction temperature #### **Application** Switching applications #### **Description** Fully clamped MOSFET is produced by using ST's most advanced MESH OVERLAY™ process based on strip layout. The inherent benefits of this new technology coupled with the extra clamping capabilities make this product particularly suitable for the harshest operating conditions such as those encountered in the automotive environment. It is also recommended for any other application requiring extra ruggedness. Figure 1. Internal schematic diagram Table 1. Device summary | Order code | Marking | Package | Packaging | | |------------|----------|---------|-----------|--| | STP62NS04Z | P62NS04Z | TO-220 | Tube | | Contents STP62NS04Z ### **Contents** | 1 | Electrical ratings | 3 | |---|---|----| | 2 | Electrical characteristics | 4 | | | 2.1 Electrical characteristics (curves) | 6 | | 3 | Test circuits | 8 | | 4 | Package mechanical data | 9 | | 5 | Revision history 1 | 11 | STP62NS04Z Electrical ratings ## 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------------------------|---|------------|------| | V _{DS} | Drain-source voltage (V _{GS} = 0) | Clamped | V | | V _{GS} | Gate-source voltage | Clamped | V | | I _D | Drain current (continuous) at T _C = 25 °C | 62 | Α | | I _D | Drain current (continuous) at T _C =100 °C | 37.5 | Α | | I _{DG} | Drain gate current (continuous) | ± 50 | mA | | I _{GS} | Gate sourcecurrent (continuous) | ± 50 | mA | | I _{DM} ⁽¹⁾ | Drain current (pulsed) | 248 | Α | | P _{TOT} | Total dissipation at T _C = 25 °C | 110 | W | | | Derating factor | 0.74 | W/°C | | dv/dt (2) | Peak diode recovery voltage slope | 8 | V/ns | | E _{AS} (3) | Single pulse avalanche energy | 500 | mJ | | V _{ESD} | ESD (HBM - C = 100 pF, R = 1.5 kΩ) | 8 | V | | T _J
T _{stg} | Operating junction temperature
Storage temperature | -55 to 175 | °C | ^{1.} Pulse width limited by safe operating area Table 3. Thermal data | Symbol | Parameter | Value | Unit | |--------------------|--|-------|------| | R _{thj-c} | Thermal resistance junction-casemax | 1.36 | °C/W | | R _{thj-a} | Thermal resistance junction-ambient max | 62.5 | °C/W | | T _I | Maximum lead temperature for soldering purpose | 300 | °C | $^{2. \}quad I_{SD} \; \leq \; 40 \; A, \; di/dt \; \leq 100 \; A/\mu s, \; V_{DD} \; \leq \; V_{(BR)DSS}, \; T_{j} \; \leq \; T_{JMAX}$ ^{3.} Starting $T_J = 25$ °C, $I_D = 20$ A, $V_{DD} = 20$ V Electrical characteristics STP62NS04Z ### 2 Electrical characteristics (T_{CASE}=25 °C unless otherwise specified) Table 4. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---|---|------|------|------|------| | V _{(BR)DSS} | Drain-source breakdown voltage | I _D = 1 mA, V _{GS} = 0 | 33 | | | V | | I _{DSS} | Zero gate voltage drain current (V _{GS} = 0) | V _{DS} = 16 V | | | 10 | μА | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ±10 V | | | 10 | μА | | V _{GSS} | Gate-source
breakdown voltage | I _{GS} = 100 μA | 18 | | | V | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 2 | | 4 | V | | R _{DS(on)} | Static drain-source on resistance | V _{GS} = 10 V, I _D = 30 A | | 12.5 | 15 | mΩ | Table 5. Dynamic | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|--|------|--------------------|------|----------------| | 9 _{fs} ⁽¹⁾ | Forward transconductance | V _{DS} = 15 V, I _D = 30 A | - | 20 | | S | | C _{iss}
C _{oss}
C _{rss} | Input capacitance Output capacitance Reverse transfer capacitance | V _{DS} =25 V, f = 1 MHz,
V _{GS} = 0 | - | 1330
420
135 | | pF
pF
pF | | Q _g
Q _{gs}
Q _{gd} | Total gate charge
Gate-source charge
Gate-drain charge | V _{DD} = 20 V, I _D = 40 A
V _{GS} =10 V | - | 34
10
11.5 | 47 | nC
nC
nC | ^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5% Table 6. Switching times | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---|---|--|------|-----------------------|------|----------------------| | t _{d(on)}
t _r
t _{d(off)}
t _f | Turn-on delay time
Rise time
Turn-off delay time
Fall time | V_{DD} = 20 V, I_{D} = 20 A,
R_{G} =4.7 Ω , V_{GS} = 10 V
Figure 14 on page 8 | - | 13
104
41
42 | - | ns
ns
ns
ns | | t _{r(Voff)} t _f t _c | Off-voltage rise time Fall time Cross-over time | $V_{clamp} = 30 \text{ V}, I_D = 40 \text{ A}$
$R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$
Figure 14 on page 8 | - | 30
54
90 | - | ns
ns
ns | Table 7. Source drain diode | Symbol | Parameter | Test conditions | Min | Тур. | Max | Unit | |--|--|---|-----|-----------------|-----|---------------| | I _{SD} | Source-drain current | | - | | 62 | Α | | I _{SDM} ⁽¹⁾ | Source-drain current (pulsed) | | - | | 248 | Α | | V _{SD} ⁽²⁾ | Forward on voltage | I _{SD} = 62 A, V _{GS} = 0 | - | | 1.5 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | I_{SD} = 40 A,
di/dt = 100 A/µs,
V_{DD} = 20 V, T_{J} = 150 °C
Figure 16 on page 8 | - | 45
65
2.9 | | ns
nC
A | ^{1.} Pulse width limited by safe operating area ^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5% Electrical characteristics STP62NS04Z ### 2.1 Electrical characteristics (curves) Figure 2. Safe operating area Figure 3. Thermal impedance Figure 4. Output characterisics Figure 5. Transfer characteristics Figure 6. Transconductance Figure 7. Static drain-source on resistance Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature Figure 12. Source-drain diode forward characteristics Figure 13. Normalized B_{VDSS} vs temperature Test circuits STP62NS04Z #### 3 Test circuits Figure 14. Switching times test circuit for resistive load Figure 15. Gate charge test circuit Figure 16. Test circuit for inductive load switching and diode recovery times Figure 17. Unclamped inductive load test circuit Figure 18. Unclamped inductive waveform ## 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. #### TO-220 mechanical data | Dim | | mm | | | inch | | |-----|-------|-------|-------|-------|-------|-------| | Dim | Min | Тур | Max | Min | Тур | Max | | Α | 4.40 | | 4.60 | 0.173 | | 0.181 | | b | 0.61 | | 0.88 | 0.024 | | 0.034 | | b1 | 1.14 | | 1.70 | 0.044 | | 0.066 | | С | 0.48 | | 0.70 | 0.019 | | 0.027 | | D | 15.25 | | 15.75 | 0.6 | | 0.62 | | D1 | | 1.27 | | | 0.050 | | | E | 10 | | 10.40 | 0.393 | | 0.409 | | е | 2.40 | | 2.70 | 0.094 | | 0.106 | | e1 | 4.95 | | 5.15 | 0.194 | | 0.202 | | F | 1.23 | | 1.32 | 0.048 | | 0.051 | | H1 | 6.20 | | 6.60 | 0.244 | | 0.256 | | J1 | 2.40 | | 2.72 | 0.094 | | 0.107 | | L | 13 | | 14 | 0.511 | | 0.551 | | L1 | 3.50 | | 3.93 | 0.137 | | 0.154 | | L20 | | 16.40 | | | 0.645 | | | L30 | | 28.90 | | | 1.137 | | | ØP | 3.75 | | 3.85 | 0.147 | | 0.151 | | Q | 2.65 | | 2.95 | 0.104 | | 0.116 | STP62NS04Z Revision history # 5 Revision history Table 8. Document revision history | Date | Revision | on Changes | | |-------------|----------|---------------------------------|--| | 21-Jun-2004 | 2 | Preliminary datasheet | | | 22-Aug-2005 | 3 | Complete document with curves | | | 21-Jan-2006 | 4 | New ECOPAK label | | | 02-Oct-2006 | 5 | New template, no content change | | | 14-May-2009 | 6 | Updated scheme in Figure 1 | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. $\ensuremath{\mathsf{ST}}$ and the $\ensuremath{\mathsf{ST}}$ logo are trademarks or registered trademarks of $\ensuremath{\mathsf{ST}}$ in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12 Doc ID 9859 Rev 6