

Vishay Semiconductors

Optocoupler, Phototransistor Output, Very High Isolation Voltage

DESCRIPTION

The CNY64, CNY65, and CNY66 consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4 pin plastic package.

The single components are mounted opposite one another, providing a distance between input and output for highest safety requirements of > 3 mm.

VDE STANDARDS

These couplers perform safety functions according to the following equipment standards:

- DIN EN 60747-5-2 (VDE 0884) Optocoupler for electrical safety requirements
- IEC 60950/EN 60950 Office machines
- VDE 0804
- Telecommunication apparatus and data processing IEC60065
- Safety for mains-operated electronic and related household apparatus
- VDE 0700/IEC 60335 Household equipment
- VDE 0160
- Electronic equipment for electrical power installation
 VDE 0750/IEC60601
- Medical equipment

FEATURES

- Rated recurring peak voltage (repetitive)
 V_{IORM} = 1450 V_{peak}
- Thickness through insulation \ge 3 mm
- Creepage current resistance according to VDE 0303/IEC 60112 comparative tracking index: $\textbf{CTI} \ge 200$

RoHS

COMPLIANT

Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):

- for appl. class I IV at mains voltage ≤ 300 V
- for appl. class I IV at mains voltage \leq 600 V
- for appl. class I III at mains voltage \leq 1000 V according to DIN EN 60747-5-2 (VDE 0884), suitable for:
- Switch-mode power supplies
- Line receiver
- Computer peripheral interface
- Microprocessor system interface

AGENCY APPROVALS

- UL1577, file no. E76222 system code H, J, and K
- DIN EN 60747-5-2 (VDE 0884)/DIN EN 60747-5-5 (pending), available with option 1
- VDE related features:
 - rated impulse voltage (transient overvoltage), $V_{\text{IOTM}} = 12 \; \text{kV}$ peak
 - isolation test voltage (partial discharge test voltage), V_{pd} = 2.8 kV peak

ORDERING INFORMATION						
C N Y PART NUMBER	6 # x PACKAGE CTR OPTION BIN	DIP, 400 mil DIP, 600 mil				
AGENCY CERTIFIED/PACKAGE		CTR (%)				
UL, VDE	50 to 300	63 to 125	100 to 200			
DIP-4 HV, 400 mil, high isolation distance	CNY64	CNY64A	CNY64B			
DIP-4 HV, 600 mil, high isolation distance	CNY65	CNY65A	CNY65B			
DIP-4 HV, 700 mil, high isolation distance	CNY66	-	CNY66B			

Vishay Semiconductors Optocoupler, Phototransistor Output, Very High Isolation Voltage

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V _R	5	V
Forward current		١ _F	75	mA
Forward surge current	$t_p \le 10 \ \mu s$	I _{FSM}	1.5	А
Power dissipation		P _{diss}	120	mW
Junction temperature		Tj	100	°C
OUTPUT			· ·	
Collector emitter voltage		V _{CEO}	32	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		Ι _C	50	mA
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation		P _{diss}	130	mW
Junction temperature		Tj	100	°C
COUPLER				
AC isolation test voltage CNY64	t = 1 min	VISO	8200	V _{RMS}
DC isolation test voltage CNY65	t = 1 s	V _{ISO}	13.9	kV
DC isolation test voltage CNY66	t = 1 s	V _{ISO}	13.9	kV
Total power dissipation		P _{tot}	250	mW
Ambient temperature range		T _{amb}	- 55 to + 85	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	2 mm from case, \leq 10 s	T _{sld}	260	°C

Note

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward voltage	I _F = 50 mA	VF		1.25	1.6	V	
Junction capacitance	V _R = 0, f = 1 MHz	Cj		50		pF	
OUTPUT							
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32			V	
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V	
Collector emitter leakage current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}$	I _{CEO}			200	nA	
COUPLER							
Collector emitter saturation voltage	$I_{\rm F} = 10 {\rm mA}, I_{\rm C} = 1 {\rm mA}$	V _{CEsat}			0.3	V	
Cut-off frequency	$V_{CE} = 5 \text{ V}, \text{ I}_{\text{F}} = 10 \text{ mA}, \\ \text{R}_{\text{L}} = 100 \ \Omega$	f _c		110		kHz	
Coupling capacitance	f = 1 MHz	C _k		0.3		pF	

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Optocoupler, Phototransistor Output, Vishay Semiconductors Very High Isolation Voltage

CURRENT TRANSFER RATIO ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
	V _{CE} = 5 V, I _F = 10 mA	CNY64, CNY65, CNY66	CTR	50		300	%	
		CNY64A	CTR	63		125	%	
I _C /I _F		CNY65A	CTR	63		125	%	
		CNY64B	CTR	100		200	%	
		CNY65B	CTR	100		200	%	
		CNY66B	CTR	100		200	%	

SAFETY AND INSULATION RATED PARAMETERS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	2.8			kV		
Partial discharge test voltage - lot test (sample test)	$t_{Tr} = 60 \text{ s, } t_{test} = 10 \text{ s,}$ (see fig. 2)	V_{pd}	2.2			kV		
Insulation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	10 ¹²			Ω		
	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω		
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω		
Forward current		I _{SI}			120	mA		
Power dissipation		P _{SO}			250	mW		
Rated impulse voltage		V _{IOTM}			12	kV		
Safety temperature		T _{SI}			150	°C		

Note

• According to DIN EN 60747-5-2 (see fig. 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Fig. 1 - Safety Derating Diagram

Fig. 2 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-2 (VDE 0884); IEC60747-5-5

Vishay Semiconductors Optocoupler, Phototransistor Output, Very High Isolation Voltage

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Delay time	V_{S} = 5 V, I_{C} = 5 mA, R_{L} = 100 Ω , (see fig. 3)	t _d		2.6		μs	
Rise time	$V_{S} = 5 \text{ V}, \text{ I}_{C} = 5 \text{ mA}, \text{ R}_{L} = 100 \Omega$, (see fig. 3)	t _r		2.4		μs	
Fall time	V_{S} = 5 V, I_{C} = 5 mA, R_{L} = 100 $\Omega,$ (see fig. 3)	t _f		2.7		μs	
Storage time	V_{S} = 5 V, I_{C} = 5 mA, R_{L} = 100 Ω , (see fig. 3)	ts		0.3		μs	
Turn-on time	$V_{S} = 5 \text{ V}, \text{ I}_{C} = 5 \text{ mA}, \text{ R}_{L} = 100 \Omega$, (see fig. 3)	t _{on}		5		μs	
Turn-off time	V_{S} = 5 V, I_{C} = 5 mA, R_{L} = 100 $\Omega,$ (see fig. 3)	t _{off}		3		μs	
Turn-on time	$V_{S} = 5 \text{ V}, \text{ I}_{F} = 10 \text{ mA}, \text{ R}_{L} = 1 \text{ k}\Omega$, (see fig. 4)	t _{on}		25		μs	
Turn-off time	$V_{S} = 5 \text{ V}, \text{ I}_{F} = 10 \text{ mA}, \text{ R}_{L} = 1 \text{ k}\Omega$, (see fig. 4)	t _{off}		42.5		μs	

Fig. 3 - Test Circuit, Non-Saturated Operation

Fig. 5 - Switching Times

Fig. 4 - Test Circuit, Saturated Operation

Optocoupler, Phototransistor Output, Vishay Semiconductors Very High Isolation Voltage

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)

Fig. 6 - Total Power Dissipation vs. Ambient Temperature

Fig. 7 - Forward Current vs. Forward Voltage

Fig. 8 - Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 - Collector Dark Current vs. Ambient Temperature

Fig. 10 - Collector Current vs. Forward Current

Fig. 11 - Collector Current vs. Collector Emitter Voltage

Vishay Semiconductors Optocoupler, Phototransistor Output, Very High Isolation Voltage

Fig. 12 - Collector Emitter Saturation Voltage vs. Collector Current

Fig. 15 - Turn-on/Turn-off Time vs. Forward Current

Fig. 13 - Current Transfer Ratio vs. Forward Current

Fig. 14 - Turn-on/Turn-off Time vs. Collector Current

Optocoupler, Phototransistor Output, Vishay Semiconductors Very High Isolation Voltage

PACKAGE DIMENSIONS in millimeters FOR CNY64

Vishay Semiconductors Optocoupler, Phototransistor Output, Very High Isolation Voltage

PACKAGE DIMENSIONS in millimeters FOR CNY65

PACKAGE DIMENSIONS in millimeters FOR CNY66

97

4

21764-73

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.